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Abstract—As we continue our quest toward exascale com-
puting, power consumption is becoming a critical factor, along
with resiliency and concurrency. Although power requirements of
individual system components (e.g., processor, memory) are taken
into consideration by vendors during the design phase, actual
power consumption of a complete system is an insufficiently
studied research area. Estimating the power consumption of a
large-scale system is a nontrivial task because of the number
of components involved and also because power requirements
are affected by the (unpredictable) workloads. What is needed is
a power monitoring infrastructure that can provide timely and
accurate feedback to system developers and application writers
so they can optimize the use of this precious resource.

In this paper, we first summarize our prior power-related
experiences and results on Blue Gene/P. Then we outline the
new power measurement capabilities of the system on IBM
Blue Gene/Q, currently the most energy-efficient platform on
the Green500 list. We describe the important characteristics
of the power measurement capabilities and the challenges they
present. We explain how we successfully implemented our power-
profiling code and demonstrated it on Argonne’s early-access
Blue Gene/Q system. Using the profiling code, we characterized
power consumption of primitive operations. In preparation for
profiling power consumption of real-world applications, we eval-
uated the accuracy of the power measurement capabilities for
short-duration activities.

I. INTRODUCTION

The field of supercomputing has grown by leaps and bounds

since its emergence 50 years ago, and it is expected to enter

the exascale era within a decade. In order to meet the exascale

goals, today’s top supercomputers will need to scale by two

orders of magnitude, at the same time increasing their power

consumption by only an integer factor, to no more than

20 MW. Power consumption of both individual nodes and the

overall HPC system is thus a critical issue to address [1].

Most of the improvement required will need to take place

on the hardware side. CPU designers have recognized that for

some time now, reducing clock frequencies, choosing simpler,

more power efficient core designs, and employing dynamic

voltage and frequency scaling. Software will also have a role

to play, however, both in ensuring that power is not wasted

and in dynamically managing power consumption across the

system.

Yet, as the saying goes, You can’t manage what you

don’t measure. Most performance studies of large-scale HPC

systems and their workloads (including parallel applications,

communication libraries, and system software) have focused

primarily on flops, bandwidth, and latency. Few concrete

studies exist that focus on studying and quantifying power and

energy consumption at the hardware and software level. Until

recently, system vendors have had little incentive to expose

extensive system and component-level power information to

users. Consequently, the power-monitoring methodology is

lacking and the measuring capabilities in today’s computer

systems are limited or missing. Petascale (and future exas-

cale) systems consisting of hundreds of thousands of nodes

drawing megawatts of electrical power mandate a need for

new, systemwide methodologies and procedures for accurate

and real-time power monitoring.

Currently, however, we are forced to rely on existing mon-

itoring capabilities provided by vendors. Large-scale systems

have built-in environmental monitoring capabilities designed

primarily to help identify and eliminate insufficient cooling

(through the use of temperature sensors) and inadequate

distribution of electrical power (through voltage and current

sensors). One of our main goals is to understand what power-

monitoring capabilities are currently made available and how

they fare with respect to spatial and temporal resolution,

accuracy, latency, and other characteristics; how much useful

information is provided by these power monitoring capabili-

ties; and what level of information can actually be exposed to

end users.

After outlining related work in Section II and IBM Blue

Gene architecture in Section III, we present experiences and

results from our early explorations on Blue Gene/P system

in Section IV. Subsequently, in Section V, we provide an

overview of the new, improved power measurement capabili-

ties of Blue Gene/Q and the challenges they present. We also

present the details of our power-profiling implementation and

the measured power characteristics on primitive operations.

In preparation for profiling the power consumption of real-

world applications, we evaluate the accuracy of the power

measurement capabilities for short-time activities. Section VI

provides conclusions and future directions.

II. RELATED WORK

Past research in the field of power usage, monitoring, and

management has focused on different goals at various times.



From the system-level perspective, power consumption has

increasingly been recognized as a limiting factor in large

data centers and supercomputer facilities. Running and cool-

ing large computing systems come with significant cost at-

tached [2], [3], [4], [5], [6].

Traditionally, power-related studies have been conducted

with a goal of reducing energy consumption, minimizing

operating machine cooling costs and thus the total cost of

ownership. These studies focused on exploring the possibility

of integrating available information with other system soft-

ware, such as runtime systems and the job scheduler, for

optimal scheduling with reduced costs. Research in power-

aware scheduling has been vast and diverse [7], [8], [9], [10],

[11], [12], [13].

Garcia et al. [14] developed an instruction-level energy con-

sumption model for many-core architectures and demonstrated

its accuracy by experimenting on an IBM Cyclops-64 chip.

Feng et al. [15] developed a power/energy profiling frame-

work for HPC cluster systems. They measure power con-

sumption by tapping digital multimeters into DC lines. They

studied the power-performance efficiency of the NAS parallel

benchmarks on a 32-node cluster.

Alam el al. [16] evaluated IBM Blue Gene/P (BGP),

comparing the Cray XT4 in various aspects of performance,

including performance per watt. They also compared power

consumption of HPC applications. They concluded that BGP

showed better performance-per-watt for certain computational

kernels while it had less power advantage on some scientific

workloads such as the Parallel Ocean Program.

Hennecke et al. [] presented an overview of the power

measurement capabilities of BGP. They measured power con-

sumption on HPC applications and presented the integration

of power and energy. No in-depth analysis of the accuracy of

power measurement was conducted in that study.

Still working on this section..

III. OVERVIEW OF THE IBM BLUE GENE

SUPERCOMPUTERS

The IBM Blue Gene supercomputers have been at the

forefront of high-performance computing for several years.

Blue Gene/L (BGL) [17]—the first generation—was released

in 2004 and topped the world wide Top 500 supercomputer

list [18] for three years. Along with scalability, IBM designed

BGL with power efficiency in mind. BGL employed 32-bit

PowerPC 440 processors running at 700 MHz, which were

less powerful, but also considerably less power-hungry, than

processors used in HPC clusters then. The core dissipated

only 2.5 mW/MHz with 1.8 V input voltage (an estimate) [19],

which yielded 3.5 W per BGL dual processor. In comparison,

the thermal design power of a dual-core Intel Xeon processor

in 2004 was more than 100 W [20].

In this paper, we focus on the Blue Gene/P [21], released

in 2007, and the Blue Gene/Q (BGQ), which was released in

2012. Table I provides a brief overview of the architecture

of BGP and BGQ. BGP is basically an improved version

of BGL, doubling the core count, memory capacity, and

bandwidth; slightly increasing core frequency; and employing

a coherent cache. BGQ is the third generation of the IBM Blue

Gene massively parallel supercomputer series. Its node cards

are water-cooled whereas the previous generations were air-

cooled. BGQ made a big leap in processor and interconnect

technologies. The peak performance is 209 TF per rack, and

the power efficiency is approximately 2.1 GFlops/W without

optical interconnect.

Packaging and system management are also important de-

sign points of the Blue Gene architecture [21], [22]. Every

rack of the Blue Gene system is organized in a hierarchical

manner. A rack consists of two mid-planes, eight link cards,

and two service cards. A mid-plane contains 16 node boards.

Each node board holds 32 compute cards, for a total of 1,024

nodes per rack. For the BGP, each compute card has a single

PowerPC 450 processor, with four cores operating at 850 MHz

each. For the BGQ, each compute card contains a single 18-

core PowerPC A2 processor [23] (16 cores for applications,

one core for system software, and one core inactive) with four

hardware threads per core, and DDR3 memory. BGP thus has

4,096 cores per rack, and BGQ has 16,384.

TABLE I
BLUE GENE ARCHITECTURE

Blue Gene/P Blue Gene/Q

Processor core PowerPC 450 (32-bit) PowerPC A2 (64-bit)
Speed 850 MHz 1600 MHz
# of cores 4 16 (+1 for system)
# of HW threads 1 4
Peak per node 13.6 GFlops 205 GFlops
L1 cache 32 KB D + 32 KB I 16 KB D + 16 KB I
Shared cache 8 MB (L3) 32 MB (L2)
Memory 2 or 4 GB 16 GB
Memory bandwidth 13.6 GB/s 42.6 GB/s
Power efficiency 357 MF/W 2 GF/W
Interconnect 3D torus 5D torus
Cooling air cooling water cooling

The Blue Gene systems have environmental monitoring

capabilities for system health check and diagnostics. These

capabilities periodically sample and gather environmental data

from various sensors and store this collected information in a

DB2 database (which can be read by privileged users) with

time-stamp and location information. Sensors are present in

locations such as service cards, node boards, bulk power

modules and cooling system boards; and monitor various

physical attributes such as temperature, coolant flow and

pressure, fan speed, voltage and current. Sensor data are

collected in a relatively long polling interval (5 minutes).

While a shorter interval would be preferable, decreasing it

stresses the database and, given the data volumes involved,

can even exceed the database server’s processing capacity. The

default polling interval is 30 minutes for service cards and 5

minutes for node cards.

The BG database stores power consumption information

(in watts) for the following components that are of particular

interest to us in this paper:

• Bulk: AC/DC converter on a rack

• Node board: DC/DC converter on a node board



• Link card: DC/DC converter on a link card

• Service card: DC/DC converter on a service card

IV. EARLY POWER EXPERIMENTS ON BLUE GENE/P

Our early power experiments on BGP focused on evaluat-

ing the capabilities of the power monitoring while stressing

different parts of the system. In particular, we focused on the

Double-Hammer FPU unit (DFP), L1 cache, L3 cache, main

memory, network link usage, and overall system (note that in

BGP, the L2 cache is just a prefetching buffer, so we did not

study it). In addition, we studied power consumption during

two system states: (1) Empty—when the BGP nodes are not

allocated to any user and are thus not booted and (2) Sleep—

when the system is booted but idling.

Our studies were conducted on the Argonne National Labo-

ratory’s “Intrepid” [24] Blue Gene/P system, one of the largest

BGP installations in the world. Intrepid has 40 compute racks

with a total of 163,840 cores and a peak performance of

557 TFlops.

A. Microbenchmarks and Methodology

As a part of our study, we created microbenchmarks to stress

Double Hammer FPU (DFP), L1 cache, L3 cache, and main

memory.

DFP benchmark: This is a floating-point loop bench-

mark, which is designed to stress solely the FPU. The core of

this benchmark is written in assembly language and repeats a

series of the Double-Hammer FPU instructions. It is optimized

to achieve the BGP peak performance, which is 3.4 Gflops per

core.

Cache/Memory benchmark: The L1 cache, L3 cache,

and main memory microbenchmarks share the same stress

code, but we vary the buffer size depending on the target we

are testing. The code performs a random walk over a pre-

initialized memory buffer. The buffer size we used for the L1

and L3 cache studies was 32 KB and 8 MB, respectively. The

buffer size for the main memory benchmark was 256 MB.

Network and system-level benchmarks: Our benchmark

for network stressing was based on all-to-all communication

using the MPI “all-to-all” [25] routines. For our system-

level study, we used the “QCD” application, which is a

lattice quantum chromodynamics code and is known to be

an aggressive stress code for supercomputer systems.

Studying system states: In the Empty system state, most

of the components are expected to be in low power mode.

We studied this state since it occurs regularly when the job

scheduler cannot make full use of the system because of

scheduling conflicts between jobs. In the Sleep system state,

the processes were suspended inside the usleep() system

call.

Power measurement on BGP is coarse grained in both

time and space. In order to obtain reliable measurements,

constant and static workloads have to be run for a period

at least twice as long as the polling interval (which can be

set between 60 and 1800 seconds). We chose to run each

experiment for an hour. To compare the bulk rack-level system

power consumption with the power consumption of a specific

system component, we ran each workload/experiment on an

entire rack (i.e., 4,096 cores). As mentioned, the database

stores power information for various components periodically.

We used this database and mapped our experiment launch

and execution time to derive power consumption for various

components during the experiments.

B. Understanding Results

Link and Service cards: Table II presents the power

consumption of link cards and service cards for the Empty

and Sleep states and the DFP, L1, L3, Memory, AlltoAll,

and QCD workloads. Note that one rack of BGP has two

service cards and eight link cards and that the results presented

are cumulative. As can be observed, the differences between

power consumption levels of these components under different

workloads are fairly small, with a total of around 800–850 watt

per rack.

TABLE II
LINK CARD AND SERVICE CARD POWER CONSUMPTION (WATTS)

Card Empty Sleep DFP L1 L3 Memory AllToAll QCD

Link 341 343 342 371 369 371 371 342

Service 482 486 486 505 487 485 505 564

BGP components: Fans, Processors: A BGP rack has 60

fans. Each fan consumes up to 26 W, which yields 1.56 kW per

rack. As the fans themselves do not have any DC/DC converter

modules and draw power directly from rack AC/DC output,

measuring their power consumption is difficult.

Each BGP compute node contains a quad-core PowerPC

450 CPU. Estimating from the PowerPC 440 core specifica-

tion [19], each core runs at 2.5 mW/MHz, which at 850 MHz

amounts to 8704 W for the whole BGP rack.

TABLE III
BULK AND NODE BOARD POWER CONSUMPTION (KW)

Empty Sleep DFP L1 L3 Memory AllToAll QCD

Rack 8.7 21.4 23.3 22.8 22.9 30.4 22.8 28.4

Node boards 3.0 14.9 16.1 16.1 16.1 22.6 16.3 20.1

Node Boards: Table III presents the bulk rack-level

power consumption from the line cord and the total power

consumption of the node boards. Each rack has 32 boards; we

present the cumulative power for all of them.

As can be observed, doing heavy computations using the

DFP workload, with very little DRAM access, draws 23.3 kW

per rack (16.1 kW from node boards). However, CPU power

consumption does not show big variations when different parts

are stressed: walking through L1 and L3 gives numbers very

close to those of DFP. Even idling (Sleep) results in a drop of

only about 1 kW per rack.

On the other hand, power consumption increases up to

30.4 kW (22.6 kW from node boards) when DRAM gets

stressed (Memory). This clearly shows that memory operations

are expensive in terms of power consumption compared to

computational instructions on the processor: about 8 kW



or 42% difference when there is heavy traffic to and from

memory. Lattice QCD is heavy on both computation and

memory access, which puts it close to the high end of power

consumption, as can be seen from the table.
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Fig. 1. BGP power distribution for QCD running on a single rack

Based on this analysis, we break down the power distri-

bution for a single BGP rack when running the lattice QCD

application and demonstrate it in Figure 1. The Idle value

comes from a separate Sleep run; the CPU value is the extra

CPU power draw estimated from the difference between DFP

and Sleep workloads; the rest of node board power draw is

attributed to Memory; the Link card, Service card, and Fans are

assumed to be constant; Other losses contain the aggregated

estimation error. We expect other applications to have similar

power distributions.

In summary, we found that it is possible to extract inter-

esting power consumption data from the BGP database. The

practical value of that data, however, is severely limited by the

long polling interval of the stored power data. Also, the data

stored for compute node boards is cumulative—our attempts to

separate CPU an memory consumption are full of assumptions

that are difficult to verify.

V. POWER EXPERIMENTS ON BLUE GENE/Q

On BGQ, IBM provides new interfaces in the form of an

Environmental Monitoring (EMON) API that allows one to

access power consumption data from code running on compute

nodes, with a relatively short response time.

Our experiences with BGQ are based on Argonne National

Laboratory’s one-rack BGQ system, which in its current form

is a early-access system.

In this section, we first describe the details of the node board

architecture. We then outline our power profiling code and

discuss the results obtained with various workloads. We also

discuss the accuracy of the power measurement capabilities

for short-duration activities.

A. Node Board Architecture

A BGQ rack has 32 node boards, each of which hold 32

compute cards. Figure 2 shows a representation of a node

board. Each node board had two direct-current assemblies

(DCA). The DCA converts the 50 V DC input voltage to

intermediate voltages. Each node board also has several volt-

age transformation modules (VTMs), which transform the

intermediate voltage output from the DCA to lower voltages

(based on a specific ratio) intended for different parts of the

node board.

The board has several power domains, but power can

currently only be measured in the seven power domains (listed

in Table IV). The DCA, internally, has a microcontroller

that periodically reads input current (Iin) and output voltage

(Vout) from the VTMs for these seven different domains

for each DCA. Instantaneous power (W) is calculated as

Vout × Iin × ratio.

Compute
Card

VTM

Compute
Card

Compute
Card

DCA

DCA

FPGA

Controller

50 Watts from
Bulk Power Supply

Micro

Querying power data from 
compute card

Other system parts

Querying environmental data
from the system

BUFFER

BUFFER

BUFFER

Fig. 2. BGQ node board

TABLE IV
NODE BOARD POWER DOMAINS

Voltage Description

0.8 BGQ compute chip (BQC) and L2 (EDRAM)
1.4 Main memory (DDR3)
2.5 Optical module power related
3.3 Optical module power related
1.5 BQC and Link chip for torus links
0.9 BQC array (on-chip memory cells)
1.0 Link chip core power

Direct access to the internal microcontroller on the DCA

is limited because internal buses and protocols on the board

are proprietary. We can, however, obtain power and current

information through an FPGA available on the node board.

The FPGA periodically queries and obtains environmental data

from the entire system. In addition, the FPGA frequently reads

voltage and current from the DCA microcontroller’s buffer for

each of the power domains. It performs these buffer reads in

a round robin manner. This requires 28 read accesses for the

two DCAs. The read interval for the FPGA is currently set

to 20ms; thus 560ms are needed to read all domains’ voltage

and current, and 560ms is therefore the sampling period. The

FPGA stores this voltage and current information in a buffer

that can hold 14 generations of it.

The lightweight operating system (called CNK) running on

the compute nodes can query any generation of power data

from the FPGA via an internal bus. The CNK provides a

system call that can return raw data (voltage and current)

of all domains; however, it currently returns only the oldest

generation of power data (i.e. oldest of the 14 generation of

power data; each of which were based on a 560ms sampling

period), which is approximately 6-7 seconds old. This data

may get even older if it overlapped with the BGQ control

system accessing the FPGA at the same time. The actual age



of the returned power data cannot be estimated currently. The

system call used to get this information is called as the “the

EMON system call.” The latency of the system call itself is

approximately 800 µs, however.

As mentioned earlier, IBM provides a new set of user-level

interfaces called “the EMON APIs” for obtaining environment

information. The EMON API, internally, relies on the “EMON

system call”, thus inheriting its limitations. In addition, the

EMON API only returns the total power consumption of the

oldest generation. Since the underlying power measurement

infrastructure does not measure all domains at the same

instant, the total power consumption the EMON API returns

may be inconsistent in some cases. For example: If a workload

begins stressing both the core and the memory at the same

time, we may not see an increased power consumption on

both core and memory within the same generation of results,

as there is a time-gap between when the core and the memory

power was measured.

We note that there is an on-going research activity in IBM to

improve the power systems, so the attributes such as sampling

interval on the BGQ power system may change in the future.

B. Implementation

The provided EMON API is currently insufficient for our

purposes because it returns only the total power consumption

of all domains and has no profiling functionality. Instead, we

designed a “power profiler code” to use the EMON system

call directly to allow us to read the 14 individual voltage and

current data points. The disadvantage of using the system call

directly, though, is that it forces us to maintain our own voltage

and current conversion code.

Our profiler code is designed to run one thread on each

node board. The thread periodically invokes the system call

with an interval lower than the FPGA interval (i.e., 560ms),

records the voltage and current on all the domains along with a

timestamp, and dumps recorded data to files. While the power

data we obtain from the EMON API is instantaneous power

(watt), profiling power consumption also allows us to estimate

integral power, or energy (i.e., watt-hours or joules). Later in

this section, we discuss the accuracy of estimated energy from

sampled power data.

An interesting implementation detail in the profiler code is

the choice of the compute node to query the power interface

and the placement of the power consumption profiling thread.

Note that BGQ has one power monitoring unit per node

board, and thus we need only one profiling thread per board.

Since every node board has 32 compute nodes, we choose a

compute node by directly decoding the node board and node

card identifiers from the universal component identifier (UCI)

available in the BGQ “personality” data structure.

The lightweight OS (CNK) running on the compute nodes

allows us to over commit multiple logical threads on top of a

hardware thread but it does not support a time-quantum-driven

preemption. Hence, the profiling thread cannot call the system

call to get power data while an application thread is busy per-

forming computations or communication. We currently assign

the profiling thread to the last hardware thread available to

applications on the chosen node. The BGQ currently supports

64 hardware threads on each node, thus this approach will

not work if an application uses all the 64 hardware threads. In

practice, however, using all hardware threads is not necessarily

beneficial for applications and may even cause performance

degradation. However, in the interest of profiling applications

that use all 64 threads, we are investigating the use of the 17th

core, reserved for system software, to run our profiling thread.

C. Experimental Setup

We have successfully implemented our power profiling code

that periodically samples all domains and records timestamp-

ed power data for analysis. In our experimental setup, the

minimum partition size (due to cabling and control system

limitations) that allows us to measure the power consumption

is 128 nodes, which spans four node boards.

In this paper, we have focused on understanding the power

consumption at a node board level for the FPUs and the

memory subsystem. Additionally, we study some power con-

sumption aspects of the communication subsystem by using

MPI benchmarks.

To understand the power consumption on the FPU and

memory, we designed a stress suite for many-core processors

called manycore-heater. The suite spawns OpenMP threads

and starts specified stress on every thread; it also uses MPI for

internode synchronization and reporting aggregated bandwidth

and flops from internal counters. A stress pattern workload

consists of a series of dummy double-precision multiply-

add operations, which allows us to understand how each

component consumes power on a primitive operation. The start

and end time of each stress test is measured for comparison

with sampled power data.

While workloads from real-world applications are usually

fixed work quanta (FWQ), our artificially generated stresses

are fixed time quanta (FTQ): each stress pattern is repeated

for a specified time duration. Comparing FWQ workloads in

energy (joules or watt-hours) is practical. Since we use FTQ

workloads, we measure our data in flops per watt or bandwidth

per watt (MB/s/W), which can be written as operations per

joule (the inverse of which is joules per operation).

D. Understanding Power Measurement Results

Figure 3 is a time series power-related graph obtained by

running the profiling code with an artificial stress pattern on

all 16 cores and 128 nodes. The pattern repeats a cycle of

i seconds main memory stress workload and i seconds sleep

with i = 1, 2, and 3. As described earlier, the system call

returns approximately 7-seconds-old power data. The power

profile code also captures the power activities before the

profiling thread starts. This data may be useful in order to

observe power consumption of the initialization phase (e.g.,

operating system startup) of the compute nodes.

FPU power consumption: BGQ A2 processor core has

a SIMD quad-vector floating-point(FP) unit, or QPU, (theo-

retically) delivering 8 FP ops per cycle. QPU executes both
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Fig. 3. Time series of aggregated power consumption per 128-node

QPX vector instructions and standard scalar PowerPC FP

instructions, which is executed in one of four slots. QPU

employs clock-gating; pruning the clock when not in use.

We observed the power consumption of QPU, running six

different synthetic FP stress loops, QPX vector fused multiply-

add(FMA) instructions or scalar FMA instructions, with 1, 3 or

6 target registers. Figure 4 shows the power consumption and

performance per watt under the FP stress loops on 128 nodes,

changing the number of OpenMP threads: 8 (one thread every

other core), 16 (one thread per core), and 32 (two threads per

core).

The result clearly shows that hardware thread(up to two

threads) is power efficient for floating point operations. It also

indicates that sub-clock gating may not be implemented for

scalar FP operations.

With 32 OpenMP threads with both 3 and 6 target reg-

ister, the aggregated performance on 128 nodes is almost

the theoretical peak 128(nodes) ∗ 1.6(GHz) ∗ 4(vectors) ∗
2(FMA) => 26.21TF lops. With 16 OpenMP threads, the

aggregated performance is 22.79 ,TFlops with 6 registers and

13.08 TFlops with 3 registers.

Unlike BGP PowerPC 450 core, the A2 core is an in-order;

the sequence of instructions directly impacts the performance.

Most instructions have single cycle throughput, so at the best

case, it can issue two instructions from different threads per

cycle if one instruction is FP instruction and another instruc-

tion is non-FPU(e.g. branch,integer or storage instruction).

However, many A2 instructions have a latency of six or seven-

cycles. For example, FP instructions have a six-cycle latency

and FP load instructons have a seven-cycle latency when it hits

in the data cache. If a FP load instruction followed by a FP

instruction that uses the target register of the FP load, it incurs

a six-cycle penalty. In the FPU benchmark loop ”vector:6”

or ”scalar:6”, it uses six target registers, thus no penalty. In

”vector:3” or ”scalar:3”, each instruction incurs a three-cycle

penalty. Multi-threading can eliminate those penalty if they

can run other threads’ instruction during stall cycles.

Power consumption on memory copying:

We also compared power characteristics on several different

memory copying routines (see Figure 5, 6 and ??). The first

is the C library’s memory copy (libc memcpy), which is

usually fully optimized for the target hardware. On BGQ, it
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uses quad load and store instructions and issues prefetching

hints if possible. We also tested memory copying with 4-

byte and 8-byte operation size, which are common sizes for

single-precision and double-precision floating-point data. The

buffer size (x axis) is reported per thread, so, for example, in

experiments with 32 OpenMP threads per node, or two threads

per core, the total memory consumption is double that of 16

OpenMP threads.

The libc memcpy routine outperforms the others if the buffer

fits in the L1 or L2 cache. If the buffer is larger, all memory

copying routines drops to approx. 0.5 GB/s/W, except the 4-

byte copy using 8 threads, which presumably does not have

enough parallelism to hide the memory latency.

For main memory access(e.g. 64MB buffer size), our stress

code achieved to approximate 26.3 GB/s (per node), which

is basically the practical peak performance, although BGQ

DDR3 itself aggregated (theoretical) peak performance is

42.6 GB/s with two channels.

For L1 cache access, it achieves 13.7 GB/s (per core) with

libc memory, 1.68 GB/s with 4-byte memcpy and 3.34 GB/s

with 8-byte memcopy. On BGQ A2, a cache-hit integer load

instruction has a five-cycle latency. As previously mentioned,

a cache-hit QPU load instruction has a seven-cycle latency.

Load instructions execute with one-cycle throughput, thank to

a 256-bit load/store interface, so the maximum data rate is

51.2 GB/s with QPU load/store and 12.8 GB/s.

Accuracy of power measurements: Our benchmark ap-

plies a constant stress for a fixed and relatively long time

period in order to characterize power consumption of prim-

itive operations. In the real world, however, stresses change

frequently, and so presumably does consumed power level.

To understand the accuracy of measured power data for
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Fig. 5. libc memcopy stress: Power consumption and Power efficiency
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Fig. 6. 4-byte memcopy stress: Power consumption and Power efficiency

short-period activities, we profiled power consumption on a

128-node partition while running intermittent workload pat-

terns that consist of a repeating cycle of stress and sleep.

We chose the libc memcpy as the stress. The cycle length

was set to 4000ms, with stress period varying from 1ms to

4000ms (100% stress). We estimated the measurement error

by calculating the ratio of the average of the measured power

consumption and the estimated average power consumption,
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Fig. 7. 8-byte memcopy stress: Power consumption and Power efficiency

assuming average consumption is proportional to the stress

length.

We observed a 0.04% error on a 1000ms stress and 0.22%

error on a 500ms stress. With the duration of the stress smaller

than 50ms, the error increases sharply (Figure 8).

At this time, we do not have a clear explanation for what

contributes to the error. We suspect a quantization error of the

A/D converter to read voltage and current, as well as sampling

errors from the internal microcontroller and FPGA.
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Fig. 8. Power measurement error

Power breakdown: Our profiling code records data on all

seven power domains. We compared the breakdown of power

consumption on idle (Sleep), FPU (N=16, compiler-generated

loop) and memcpy (64 MB buffer per thread) and also a few

MPI primitives—see Figure 9.

In our measurements on a 128-node partition, we have not

observed any significant change in power consumption on

domain 3, 4, 6, and 8 among stresses, including Sleep. As

for domain 1 (CPU core), the power consumption on the FPU



stress is the highest. The FPU stress consumes an additional

6 W per processor compared with the idle power consumption,

while other stresses consume an additional 3 to 5 W, thus

overall there is not much difference between them. However,

domain 2 (memory) shows more pronounced differences. In

particular, the memcpy stress consumes additional 9 W per

processor. MPI primitives mostly consume power for memory

operations without an increase in domain 1 power, this result

indicates that these operations are probably performed by

using the DMA engine.

BGQ compute chips employ clock gating. When a com-

ponent is not in use, the clock to that component is cut

off. This approach applies to components such as the FPU;

however, other components such as the link chip do not have

such feature, so their power consumption is nearly constant

regardless of the workload.

Fig. 9. Breakdown of power consumption

VI. CONCLUSIONS

In this paper we evaluated the existing power monitoring ca-

pabilities of IBM Blue Gene systems. These capabilities were

designed primarily with environmental and health monitoring

in mind, but, with the new push toward more energy-efficient

computing, we were interested in harnessing them for power

consumption measurements of HPC applications.

We found that with a careful choice of benchmarks, it is

possible to obtain meaningful power consumption data even

on the BGP systems, where the interval of the data stored in

the database is measured in minutes. Data so coarsely grained,

however, is of little practical use in applications consisting of

multiple distinct phases. Also, the cumulative nature of the

data from node boards does not aid in identifying the most

power consuming subsystems (e.g., CPU vs memory).

In comparison, the new power monitoring capabilities on

the BGQ system are a significant improvement. In addition to

providing sub-second resolution, we get separate data for CPU,

memory, and the interconnect. Crucially, the data is directly

accessible to the compute job running on the system. There

is still room for improvement, however, such as eliminating

the 7-second delay before the data becomes available. With

the increasing resolution, the issue of jitter rears its head.

Perhaps it would be best if software were to only indicate the

beginning and end of a measurement period, with the sampling

and integration handled in hardware, so that the software is

presented with total energy used rather than an instantaneous

power consumption.

With the new monitoring capabilities, we successfully

implemented our power-profiling code and demonstrated it

on Argonne’s early-access BGQ system. We studied power

efficiency (performance-per-watt) characteristics on primitive

operations; the results show interesting characteristics of BGQ.

For example, we observed that the performance-per-watt of

vector operations is more than twice that of scalars. This is

presumably because there is no subcomponent clock gating in

FPU. We also confirmed empirically that two hardware threads

per core are better than a single thread for all workloads in

the core and L2 cache domain.

We will continue to investigate power monitoring capabil-

ities of emerging HPC systems and will keep developing our

power profiling code. Our goal for BGQ is to make the pro-

filing completely transparent (running it on a spare hardware

thread of the system core) so that we can profile unmodified

application binaries, seeking to improve their power efficiency

at leadership-scales.
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